Winding distribution effects on induction motor rotor fault diagnosis
نویسندگان
چکیده
The sidebands around stator currents harmonics as a potential tool for supporting the diagnosis of rotor faults in induction motors are analyzed in this paper. The presence of broken bars introduces high frequency components in the machine currents spectrum in addition to the characteristic sidebands around the fundamental component. These additional components are due to the interaction between, rotor asymmetry and either the voltage harmonics, or winding distribution, or rotor slots. In particular, the components at frequencies near to fifth and seventh harmonics, produced by the interaction between the rotor faults and the harmonics of the spatial distribution of stator windings, are analyzed in this work. A multiple coupled circuit model of the induction motor is used to evaluate the sensitivity of these components for different stator winding configurations, load level, supply voltage conditions, and different number of broken bars. Simulation results showed that a particular analyzed component near to fifth harmonic depends mainly on fifth harmonic of winding distribution, which remains almost constant for most common distributions. Therefore, it is expected that this component should be found in most motors with broken bars. Finally, experimental laboratory results and two industrial cases that validate the analysis are presented. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Exact Modeling and Simulation of Saturated Induction Motors with Broken Rotor Bars Fault using Winding Function Approach
Winding function method (WFM) provides a detailed and rather simple analytical modeling and simulation technique for analyzing performance of faulty squirrel-cage induction motors (SCIMs). Such analysis is mainly applicable for designing on-line fault diagnosis techniques. In this paper, WFM is extended to include variable degree of magnetic saturation by applying an appropriate air gap functio...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic
model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in o...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in ord...
متن کاملImprovement of Electromagnetic Forces in a Single-Phase Induction Motor by Providing a New Winding Distribution
Single-phase induction motors have a wide range of domestic and industrial applications. These motors have a squirrel cage rotor and their stator usually has two windings: main and auxiliary. The use of auxiliary winding in the structure of single-phase induction motors creates two unbalance and asymmetric phases. This causes to increase the spatial harmonics of the field in the air gap, and al...
متن کامل